Faz hoje exactamente 2 anos que pela primeira vez escrevi aqui que os extraordinários investimentos em hidroelectricidade anunciados pelo Governo de então não iam gerar energia praticamente nenhuma - iam, sim, servir de estabilizador das energias eólica e solar que então se projectavam a uma escala gigantesca!
Chegara a esta conclusão depois de consultar a informação publicamente disponível na net, estimulado pelos extraordinários números que eram avançados, e apesar de uma imensa propaganda que mistificava deliberadamente o assunto. No caminho, deparei com alguém que já fizera reflexão semelhante, o economista Eugénio Rosa, mas que, talvez por falta de conhecimentos técnicos, tinha erradamente chegado à conclusão que o objectivo era dar consumo à electricidade espanhola nuclear, a qual porém nunca precisou de tal recurso nem irá precisar. Eugénio Rosa tinha errado no alvo, mas não tinha errado no facto de ser a bombagem a grande motivação de todo o investimento anunciado *!
Depois desse post de há 2 anos escrevi outros (podem ser rapidamente encontrados na rúbrica "hídrica" à direita), e todo o assunto das renováveis intermitentes e do seu sobrecusto sistémico ganhou grande projecção, mas há um aspecto que ainda não analisei devidamente: o dos mecanismos de recuperação dos investimentos anunciados.
Para discutir esta questão, começo por recapitular, corrigindo alguns erros de pormenor de posts passados, a potência média (em MW) de origem hídrica prevista para cada empreendimento, a qual se obtém dividindo os GWh/ano estimados nas memórias técnicas dos empreendimentos por 8,766, o número médio de milhares de horas de um ano. As referidas memórias técnicas estão todas aqui.
Do Programa Nacional de Barragens de Elevado Potencial Hidroeléctrico foram concessionadas 8 barragens, algumas das quais têm suscitado protestos ambientalistas e de sectores das populações locais:
Girabolhos (Endesa): 11.29 MW (99 Gwh/ano);
Vigado/Alto Tâmega (Iberdrola): 13.00 MW (114 GWh/ano);
Daivões (Iberdrola): 16.88 MW (148 GWh/ano);
Padroselo (Iberdrola): 11.64 MW (102 GWh);
Gouvães (Iberdrola): 17.45 MW (153 GWh/ano);
Foz Tua (EDP): 38.79 MW (340 Gwh/ano);
Fridão (EDP): 34.11 MW (299 GWh/ano);
Alvito (EDP): 7.07 MW (62 GWh/ano).
Total do PNBEPH: 150.23 MW de potência média, correspondentes a 1317 GWh de energia anual e a 2.5% do consumo nacional.
Potência instalada (que não tem nada a ver com a energia oriunda do rio): 2200 MW (inicialmente haviam sido previstos apenas 941 MW ao todo).
Investimentos, retirados do site da EDP e de notícias da Imprensa: 3,16 Biliões € (2,06 espanhóis, 1,1 da EDP).
Vale a pena notar que, com 35% do investimento total anunciado, a EDP obteve 53% da energia hídrica (80 MW médios), o que não foi mau negócio nacional.
Porém, além destes 8 aproveitamentos, estavam também já em construção mais dois, pela EDP:
Baixo Sabor (aqui): 26.24 MW (230 GWh/ano);
Ribeiradio-Ermida (aqui): 15.29 MW (134 GWh/ano).
Os investimentos realizados nestas duas barragens, actualizando os preços para o presente, terão sido, segundo a EDP, de 0,67 biliões €.
Com estas duas, a potência média gerada total das 10 barragens será de 192.9 MW (1691 GWh/ano), dos quais 121.4 da EDP que, nisto tudo, terá investido 1,77 biliões de €.
Assim e aparentemente, quem fez um investimento a pensar sobretudo na bombagem terão sido a Iberdrola e a Endesa, que apenas obtiveram 70.33 MW médios por uns alegados 2,06 biliões de €.
Porém, como já tinha notado há 2 anos, é preciso considerar também os investimentos em "reforços de potência" feitos pela EDP e que o foram sobretudo em instalação de bombagem, cobrindo as barragens de Picote II, Bemposta II, Alqueva II, Venda Nova III, Salamonde I e Paradela II, e que acrescentaram produções de energia insignificantes: 3.45 MW médios no Alqueva, 2 MW na Bemposta e, no total e já considerando o 1.45 MW médio que o Baixo Sabor permitiu aproveitar de outros empreendimentos, pela gestão melhorada da bacia hidrográfica, estes outros empreendimentos gerarão apenas 14.5 MW médios anuais, mas terão custado à EDP 1,25 biliões de €. O que crescentaram foi capacidade de bombagem e mais potência de ponta! Como se vê, afinal houve grande convergência e partilha entre Espanha e Portugal!...
A energia total de origem hidroeléctrica que estes 5,08 biliões de € vão gerar é assim, e feita a soma, de 207 MW em média (1,815 TWh/ano), 3,5% do consumo nacional, e apenas acresce em 15,8% a produção hidroeléctrica que já havia no país (excluindo mini-hídricas).
Porém, para avaliar custos há ainda que contabilizar os investimentos da REN em rede de Muito Alta Tensão para transitar as enormes, ainda que ocasionais, potências geradas e consumidas por estas hidroeléctricas.
Ora já este ano a REN anunciou que dos investimentos na rede previstos para os próximos anos 2012-2016, concomitantes com a construção das novas barragens (e parques eólicos que delas precisam), 0,45 biliões de € se destinam a "apoiar as novas renováveis", o que constituirá 1/4 da totalidade dos investimentos da empresa. No entanto, a REN já há anos que vem a reforçar a rede, a uma média de 200-250 milhões de €/ano, pelo que admitindo a mesma proporcionalidade se poderá estimar que já terão sido investidos outros 0,45 biliões de € para dar vazão às (raras) pontas de produção eólica. De qualquer modo, destes valores nem tudo será para ligar os parques eólicos às estações de bombagem da EDP e, embora o grosso do trânsito de energia vá ser entre o Minho, onde estão a maioria dos parques eólicos, e o Alqueva (o maior "depósito" de água bombábel), no outro extremo do país, poderemos admitir que por causa das barragens a REN investirá pelo menos 0,6 biliões de €, o que totaliza, somando ao investimento nas próprias barragens, 5,7 biliões de €. ...
Entretanto, a quantidade de energia que a EDP prevê fornecer com origem na bombagem está publicada aqui e extrai-se da frase "17, 9 TWh/ano de produção bruta ou 13,3 TWh/ano de produção líquida de bombagem", o que revela o plano de fornecer 4600 GWh/ano (de 17,9-13,3 TWh/ano) a partir da bombagem.
Este valor corresponde a 525 MW de potência média, e se os comparamos com os 207 MW de origem hídrica gerados pelos rios (ou se compararmos os 4600 com os 1815 GWh contabilizados atrás, o que é o mesmo), comprovamos que o grande objectivo destes investimentos é, de facto, a regularização da produção eólica, como aliás a REN já explicara no documento do PNBEPH e como tem sido explicitamente explicado pelo Prof. Peças Lopes da FEUP (ver figura), o grande catedrático desta solução para Portugal...!
Podemos ainda, como já fiz várias vezes, notar o seguinte: para produzir em média 525 MW (4600 GWh/ano) provenientes de bombagem, as barragens têm que consumir pelo menos 700 MW (6130 GWh/ano) de origem eólica, dadas as perdas técnicas no processo. Isto resulta de neste processo a energia de origem eólica ter de primeiro transitar nas linhas da REN até às barragens, linhas onde há perdas (da ordem de 1%), depois passar pelos transformadores das barragens, accionar os geradores a funcionarem como motores, perdendo cerca de 1% em cada uma destas etapas, dos motores eléctricos passar às turbinas hidráulicas e às condutas de elevação, onde as perdas são maiores - e, depois de novo, para regressar à rede, descer pelas condutas, onde se dão a maior parte das perdas devido ao atrito (perdas de carga), accionar as turbinas hidráulicas, que movem os geradores eléctricos, cuja electricidade passa de novo pelos transformadores e volta a transitar nas linhas, perdendo 1% em cada uma destas etapas. No total e incluindo as perdas nas linhas da REN, dissipa-se à volta de 25% da energia inicial, mas as perdas podem ir a mais de 30% **!...
Ambientalmente relevante, entretanto, é que estes 175 MW de perdas (que talvez cheguem a 225 MW...) (de 1530 GWh/ano a 1970 GWh/ano) anulam os 207 MW de origem hídrica que as barragens extrairão dos rios, justificando o que tenho dito: as barragens vão produzir zero de energia!...
Sistemicamente, porém, a bombagem hídrica presta um serviço que pode ser rentável para os respectivos investidores, e é isso que vou procurar avaliar, para vários cenários, terminando pela identificação de quem ganha e de quem paga este serviço.
Considerando a procura de electricidade, que varia com as horas do dia e os dias da semana e do ano, a oferta não tem sempre o mesmo valor: vale mais quando a procura é maior, nas horas de ponta, e menos quando é menor, nas horas de vazio. Em Portugal o consumo médio é de muito aproximadamente 6,o GW, mas às horas de ponta (hora de jantar) chega perto dos 8,8 GW, e no vazio (madrugadas) pode ficar-se só por uns 3,7 GW.
Um sistema eléctrico bem planeado tem um conjunto de centrais de relativamente elevado investimento inicial mas baixos custos variáveis a trabalhar permanentemente de modo a cobrir o mínimo de 3700 MW, e depois para as pontas reservam-se as centrais baratas mas de elevados custos variáveis (sobretudo combustível). Dependendo das condições de um país, essa base do diagrama de cargas pode ser, por exemplo, satisfeita com centrais a carvão ou nucleares, enquanto as pontas serão satisfeitas com centrais de ciclo combinado a gás natural. Se houver rios e barragens, estas podem ser usadas para regularizar a produção, sustendo a água nas horas de vazio e turbinando-a nas horas de ponta, se as condições hídricas forem adequadas e não havendo necessidade de bombagem.
Mas pode acontecer que não haja caudal dos rios que chegue, e então uma solução poderá ser ter as tais centrais de base a produzirem mais que o consumo nas horas de vazio, e usar o excesso de energia para bombar água em hidroeléctricas reversíveis, que funcionam assim como reservatórios de energia (na forma de água elevada), para uso nas horas de ponta. Perde-se 25% da energia produzida pelas centrais de base mas, se esta for muito barata, mesmo assim economicamente compensa.
Isto é o que faz a França, por exemplo, que tem 75% da sua electricidade de origem nuclear.
Se aplicada a solução francesa ao nosso país, para exemplificar, ter-se-iam centrais nucleares a produzirem em permanência 4500 MW (75% dos 6000 consumidos em média), e nas horas de vazio sobrariam 800 MW (4500-3700), que seriam consumidos em bombagem pelas hidroeléctricas. Como o custo médio do kWh nuclear é em França de 4,1 ç, se as centrais a venderem à rede durante a maior parte do dia a 5 ç (valor típico), podem perfeitamente vendê-las em 4 horas de vazio a preço zero que isso ainda é compensador, por não terem de as desligar, dado que se as desligassem isso requereria dias para voltarem a funcionar normalmente.
Em Portugal a bombagem também se usa desde há mais de 40 anos, num regime articulado entre hídricas de fio de água e hídricas de albufeira. As primeiras, mais baratas, só conseguem suster água por algumas horas, enquanto as segundas podem armazenar razoáveis quantidades. Assim, em Invernos muito chuvosos, havia alturas, até há 40 anos, quando o nosso consumo per capita era menos de 1/5 do de hoje, em que as hídricas de fio de água ou geravam mais do que o consumo ou abriam as comportas e desperdiçavam a água, e assim produziam um excesso de energia que era consumida pelas hídricas de albufeira com bombagem a encher as barragens - para a usar nas horas de ponta, no Verão e até de um ano para o outro!
Obviamente que tanto num como no outro exemplo a bombagem adicona um custo à energia bombada, o custo do investimento nas próprias capacidades de bombagem e mais as perdas de energia do processo; porém, se a energia assim aproveitada for muito barata, o custo total ainda será baixo, e a solução boa para todos - incluindo os consumidores.
Para avaliar agora a rentabilidade e custos da nova bombagem prevista para as eólicas, convém começar por notar que o cenário previsto pelo estudo da REN constante do próprio plano do PNBEPH era para uma potência eólica instalada no país de 5.7 GW, +1,5 GW do que existe neste momento, satisfazendo 22% do consumo nacional (à media de 1400 MW eólicos) e tornando-nos o campeão mundial do consumo dessa forma de energia! A figura seguinte simulava o que se previa acontecesse.
A figura mostra claramente que se previa um excesso de produção eólica durante a noite (quando ocorrem os consumos mínimos e o vento é maior), num total de cerca de 350 MW médios e uma ponta de perto de 2000 MW pelas 5 h da madrugada. Ou seja: com tal produção eólica, 1/4 dela teria de ser armazenada por bombagem, para não ter de ser deitada fora ou exportada a preço zero!
Os números previstos pela EDP para a energia bombada, porém e como vimos, são o dobro destes, e de facto o plano do Governo anterior propunha que se chegasse a 8500 MW de potência eólica instalada, o dobro do que existe presentemente! Por outro lado, 700 MW em média de energia eólica consumida em bombagem serão o dobro dos 350 MW visualizados pela REN, apesar da potência instalada de 8500 planeada pelo anterior Governo ser "apenas" +50% que os 5700 MW considerados pela REN, mas isso é consistente com o facto de quanto maior a percentagem de energia eólica, maior a percentagem dela que precisará de ser armazenada para se conseguir regularizá-la.
É também curial notar que, se os 350 MW médios a bombar previstos pela REN para uma potência eólica instalada de 5700 MW requerem 2000 MW de potência de ponta na bombagem pelas 5h da manhã, os 700 MW médios a bombar previstos pela EDP para a potência eólica de 8500 MW planeados pelo Governo anterior requererão pelo menos 4000 MW de potência de ponta, precisamente o que foi projectado realizar-se após o PNBEPH e pelos investimentos da EDP.
Estamos agora em condições de fazer alguns cálculos de rentabilidade económica, para vários cenários de futuro e algumas hipóteses adicionais que apresentarei no seguimento. A primeira hipótese é que as taxas de juro pagas pelo capital investido serão de 8,5%, um valor típico para investimentos em anos passados recentes,.
- Cenário A: tudo corre conforme planeado pelo Governo anterior e os espanhóis também
Neste caso, o mais optimista para os investidores, Espanha usa as barragens da Iberdrola e da Endesa para armazenar o seu próprio excesso de energia eólica, e todo o excesso de eólica nacional é trabalhado apenas pelas centrais da EDP. Vou também ter em conta a remuneração recentemente promulgada de 20 k€/MW pela "garantia de potência" e admitir que as barragens conseguem comprar a energia eólica, no mercado e de madrugada, a 0 ç/kWh, para vendê-la nas horas de ponta a 6,5 ç/kWh. Note-se que, dado o baixo ou nulo valor que a energia eólica atinge no mercado nas horas de vazio, o rendimento técnico da bombagem é irrelevante para quem a faz.
O investimento a recuperar é, neste caso, apenas o da EDP (3,0 biliões de €) e o da REN (0,9 biliões de €), verificando-se então que:
- O encargo anual da bombagem da energia eólica para os consumidores será de 430 milhões de € (dos quais 80 para a REN) acrescendo em 2,5 ç/kWh o custo de produção médio de toda a energia eólica;
- A EDP recupera o seu investimento em 11 anos. Receberá anualmente 376 M€ pela electricidade vendida e 52 M€ pela "garantia de potência".
- Cenário B: como em A, mas com menor diferencial de preços entre a eólica comprada e a revendida.
Admitindo agora valores mais razoáveis de compra e venda da energia eólica, respectivamente de 1 ç/kWh e 5,5 ç/kWh:
- O encargo anual da bombagem da energia eólica para os consumidores será de 339 milhões de € (dos quais 80 para a REN) acrescendo em 2,0 ç/kWh o custo de produção médio de toda a energia eólica;
- A EDP recupera o seu investimento em 22 anos. Receberá anualmente 257 M€ pela electricidade vendida e 52 M€ pela "garantia de potência".
- Cenário C: Como em A, mas só se vêm a instalar 5700 MW de potência eólica
Neste caso e de acordo com a antevisão da REN, só haverá metade da energia eólica para bombar relativamente aos cenários anteriores. O investimento necessário da REN será também menor.
- O encargo anual da bombagem da energia eólica para os consumidores será de 261 milhões de € (dos quais 60 para a REN) acrescendo em 2,2 ç/kWh o custo de produção médio de toda a energia eólica;
- A EDP recupera o seu investimento em 32 anos. Receberá anualmente 226 M€ pela electricidade vendida e 52 M€ pela "garantia de potência".
- Cenário D: como em B, mas só se vêm a instalar 5700 MW de potência eólica.
- O encargo anual da bombagem da energia eólica para os consumidores será de 215 milhões de € (dos quais 60 para a REN) acrescendo em 1,8 ç/kWh o custo de produção médio de toda a energia eólica;
- A EDP receberá anualmente 161 M€ pela electricidade vendida e 52 M€ pela "garantia de potência". Nunca recuperará o investimento feito e terá acumulado um prejuízo de 34 biliões de € ao fim de 50 anos. Só recuperará o investimento, e ao fim de 42 anos, se a remuneração do capital investido não superar 6,5% ao ano.
- Cenário E: O investimento em eólicas pára no valor em que está (4250 MW).
Mesmo admitindo o cenário optimista de que as barragens conseguem comprar a energia eólica a 0 ç/kWh e vendê-la a 6,5 ç/kWh, e que ainda assim haverá uma potência média de metade da do cenário anterior para bombar (130 MW médios), e que não se realizam os investimentos previstos pela REN para os próximos anos, ter-se-á:
- O encargo anual da bombagem da energia eólica para os consumidores será de 164 milhões de € (dos quais 40 para a REN) acrescendo em 1,8 ç/kWh o custo de produção médio de toda a energia eólica;
- A EDP receberá anualmente 149 M€ pela electricidade vendida e 52 M€ pela "garantia de potência". Nunca recuperará o investimento feito e terá acumulado um prejuízo de 42 biliões de € ao fim de 50 anos. Só recuperará o investimento, ao fim de 40 anos, se a remuneração do capital investido não superar 6,0% ao ano.
- Cenário F: O investimento em eólicas pára no valor em que está (4250 MW) e o de Espanha também.
Nem a EDP nem a Iberdrola nem a Ensesa recuperarão jamais os investimentos feitos, mesmo admitindo que os 2,06 biliões de € alegados pelas "eléctricas" espanholas são pura fantasia e que o valor real andará por metade desse. Além disso estas empresas irão competir pelo reduzido mercado de bombagem português, agravando mais ainda os prejuízos da EDP, ainda que reduzindo os encargos para os consumidores devido à competição nos preços.
Talvez se perceba agora melhor porque é a EDP uma tão grande defensora da energia eólica, apesar de ela própria ter limitados investimentos em aerogeradores no país. Quanto aos investimentos espanhóis, não tenho notícia de como vão eles...
* - não consegui reencontrar o estudo de Eugénio Rosas que estava no blog comunista "Resistir", para lhe fazer a devida hiperligação.
** - A FEUP, com o INESC-Porto e sob a orientação do Prof. Peças Lopes, produziu um estudo de gestão hídrico-eólico para uma região no norte em que considerou, com dados da EDP, perdas na bombagem superiores a 30%. Porém, os resultados desse trabalho, outrora públicos, desde que começámos a falar deste processo passaram a ser cuidadosamente escondidos...
A APREN mandou a Roland Berger escrever um rol de mentiras cuja leitura é deveras nauseante, e por isso e por que já me falta a paciência, não vou tratar do dito escrito.
Até porque isso está ser feito, e bem, por quem revela mais paciência do que eu para aturar estes vomitados: aqui no Ecotretas (e aqui), e num novo blog que é um herdeiro meu nestas coisas da energia, o Luz Ligada.
Passo-lhes a espada. E recomendo aos leitores interessados que vão até lá ver as estocadas.
Entretanto, há novidades: acabo de saber que a ideia do imposto especial que tenho sugerido vai mesmo acontecer, e que por causa disso e infelizmente, a cotação das acções da EDP está em queda. O imposto é sobre os malfadados CMEC, e vai buscar 200 milhões de €.
É justo. A crise não pode ser paga só pelos inocentes!
Foi ontem inaugurada a 3ª central nuclear argentina, em Atucha, a 115 km de Buenos Aires.
Com um reactor de 700 MW, terá custado cerca de 1,8 biliões de €, o que permite estimar um custo de produção do kWh entre os 4 e os 5 ç. Uma 4ª central nuclear está já em estudo avançado.
A Argentina fez há muito tempo uma aposta em reactores nucleares de água pesada, as quais podem usar urânio natural em vez do enriquecido, embora a experiência tenha mostrado que um ligeiro enriquecimento (de 0,7% para 0,85% de U235) permita aumentar a eficiência da cisão nuclear em 40%.
Curiosamente, quem projectou e construiu a 1ª central nuclear argentina, nos anos 60, e esta agora inaugurada, foi a SIEMENS, que recentemente se converteu ao "greenpeace" e vendeu as suas encomendas e tecnologias à AREVA francesa. Porém, quem tem dominado no mercado mundial a tecnologia dos reactores de água pesada são os canadianos, com os seus CANDU, que foram quem forneceu as centrais nucleares da Roménia e a 2ª central nuclear argentina, mas que para as próximas terão de concorrer em mercado aberto, segundo os planos argentinos.
A construção desta central agora inaugurada esteve parada 15 anos, devido à crise económica argentina que culminou com a bancarrota uma década atrás e de que o país tem estado a recuperar este tempo todo.
Como notei aqui há 4 meses, um aumento do IVA na electricidade de 6 para 23% não arrecadaria para o Estado cerca de 0,5 mil milhões de € extra, mas apenas perto de 0,37 mil milhões de €, porque há dois tipos de consumidores finais de electricidade que suportam esse IVA: as famílias e o próprio Estado.
Ora enquanto as famílias consomem presentemente 29% da electricidade total, o próprio Estado consome 9%, ou seja, constitui praticamente 1/4 do consumo final de electricidade que não tem como transferir o IVA para jusante. Esses 9% do Estado decompõem-se em duas parcelas: edifícios (5.6%), e iluminação pública (3.4%).
Na década de 2000-2009, o consumo nacional de electricidade aumentou 33% (1/3), mas o consumo das famílias aumentou 49% (1/2), o da iluminação pública 65% (2/3) e o dos edifícios do Estado 70% (de 1,61 para 2,73 TWh)!
Não é difícil compreender a razão deste aumento de consumo nos edifícios do Estado, quando se observa o tipo de construção aplicado nas suas remodelações, cheias de superfícies envidraçadas (mais baratas), compensadas pela generalização do ar condicionado: dos novos tribunais na Expo às repartições de Finanças, passando pelas obras da parque escolar, essa foi a regra!
Noticiam os jornais que os responsáveis pelas escolas se estão a dar conta de que, com a redução do orçamento disponível, não vão ter dinheiro para pagar a luz. Porém, para a luz sempre terão, mas para o aquecimento e para o ar condicionado é que não! Pelo que a medida da Ministra Assunção Cristas, de eliminar o uso da gravata no seu Ministério, e que alguns ridicularizaram, é perfeitamente avisada e apenas copia, aliás, as práticas japonesas! Convém notar, porém, que se essa medida é avisada para o Verão, já para o Inverno deverá ser complementada pela recomendação do uso de camisolas de gola alta ou cachecóis, senão mesmo pelo regresso à mantinha nos joelhos que o antigo ditador exibia mesmo nos Conselhos de Ministros...
Naturalmente, é provável que haja uma deterioração da saúde das crianças das escolas que já hoje dependem da alimentação lá fornecida, que aumente também o número de idosos que todos os anos morrem de frio em Portugal, e que em geral se vá observar um "aumento da eficiência energética" no país. Porém, o Estado deverá dar o exemplo - sob pena do aumento do IVA ir apenas penalizar as famílias e nem sequer se traduzir em significativos ganhos fiscais para o Estado!
Ora, além do aumento do consumo energético pelos edifícios do Estado, e cuja contenção requer mudanças de hábitos que é preciso que o Estado traduza em recomendações concretas de poupança, o problema da iluminação pública não é de somenos importância.
Com efeito, é de notar que ao mesmo tempo que se proíbe a venda ao público das velhas lâmpadas incandescentes, seguindo os ditames de Bruxelas, relativamente à iluminação pública, muito recentemente mas ainda na vigência do anterior Governo, através da ADENE, o que o Estado fez foi publicar um manual académico sobre luminotecnia, onde não se consegue encontrar qualquer referência prática a como optimizar economicamente o rendimento da iluminação pública!
Valha-nos a iniciativa cívica de alguns cidadãos, como a do Prof. Guilherme Almeida da Academia Militar, e que neste curto e ilustrativo texto ensina os decisores a projectarem a iluminação pública da forma que melhor rendimento lhe obtém: com lâmpadas de sódio de baixa pressão (fica tudo castanho mas, para um país do 3º Mundo como o nosso é bom que chegue) e, sobretudo, projectores nos candeeiros que concentrem a luz no solo em vez de iluminarem as nuvens (como na figura seguinte)!
Nos últimos leilões de energia eólica no Brasil, que ainda tem apenas 1% da sua electricidade proveniente dessa origem mas pretende atingir 5% nos próximos anos, o preço de venda dos vencedores do leilão ficou abaixo de 100 R/MWh - ao câmbio actual, cerca de 4,4 ç/kWh.
É um preço excelente e inesperado para as próprias autoridades reguladoras, que não contavam com que o kWh de origem eólica viesse alguma vez a descer abaixo dos 5,25 ç/kWh! No ano passado por esta altura, o melhor preço que se conseguira para a eólica fora de 5,75 ç/kWh...
Com este preço, o custo de produção do kWh eólico fica abaixo do gerado em centrais de ciclo combinado a gás natural, as quais ultimamente têm tido um grande incremento no Brasil. Naturalmente que, embora o custo de produção possa ser inferior, o valor sistémico das duas energias não é o mesmo, porque enquanto as centrais a gás geram sempre que é preciso, as eólicas só quando há vento. No entanto, como energia de base, e desde que o seu volume não ultrapasse um limite que o sistema eléctrico possa "encaixar" sem meios de armazenagem ou de reserva adicionais, como será garantido com o limite de 5,5% previsto no Brasil, a intermitência e incontrolabilidade do vento não são graves, e sem dúvida que cada kWh eólico gerado corresponderá a um kWh poupado proveniente de gás natural.
Cerca de 72% da electricidade brasileira é de origem hidroeléctrica, apesar do Brasil ainda só ter explorado 1/4 dos seus recursos hídricos, mas as pressões ambientais têm dificultado a construção de novos aproveitamentos e o ritmo de crescimento do consumo desse nosso país-filho de 200 milhões de habitantes tem sido de 5% ao ano. Daí o recurso que nos últimos anos tem sido feito ao gás natural (de que o Brasil tem recursos mas cujo preço nos mercados internacionais subiu já 40% este ano!), assim como os planos brasileiros para a ampliação do seu parque de centrais nucleares (presentemente está em construção a sua 3ª central, de 1400 MW, mas mesmo com ela a energia nuclear só produzirá 3% da electricidade consumida no Brasil).
Porém, as centrais nucleares requerem tempos longos desde a decisão até à disponibilidade (a não ser que se progrida ao fulgurante ritmo chinês...), e dado que o Brasil apenas agora começou a instalação de renováveis não-hídricas, tem nestas um potencial considerável, ainda.
No seu plano de desenvolvimento energético para a década presente (sim, o Estado brasileiro faz planeamento energético!...), para um consumo que é presentemente umas 9 vezes o nosso e uma população 20 vezes a nossa, consumo que se prevê cresça 50% até 2019 (ver quadro anexo), o abastecimento no fim da década será predominantemente garantido por mais hidroeléctricas (bendito Amazonas!...), mas também biomassa e eólica (em aproximada paridade, algo usual nos países racionais), e a óleo combustível, típico das comunidades isoladas brasileiras! O plano energético brasileiro prevê um custo de produção médio da energia eléctrica, em 2019, de 4,85 ç/kWh (ao câmbio actual).
Voltando ao baixo preço conseguido para a energia eólica actualmente no Brasil, tem interesse entender as razões desse valor de apenas 4,4 ç/kWh, igual ao reclamado em França pela EDF como custo de produção do kWh de origem nuclear (embora o Regulador francês só aceite 4,1 ç/kWh).
Em primeiro lugar, estando no começo, são os locais de melhor vento (ou seja, forte e regular) que estão em concessão. Dado o modo competitivo como as concessões estão a ser leiloadas (ver o parágrafo seguinte), a informação técnica sobre isto é difícil de obter, mas uma pesquisa levou-me ao valor de 34% para o factor de capacidade ou utilização destas eólicas (ver o comentário de Rogério Mastri no hyperlink), valor plausível. A energia produzida por uma eólica é proporcional a esse factor de capacidade, e dado que o custo da mesma é quase todo o do investimento inicial, tal significa que o custo de produção do kWh eólico é inversamente proporcional a esse factor. Para efeitos comparativos, Portugal tem um factor de capacidade médio sofrível de 25%, com os melhores locais a terem-no de 28% na região Oeste, e portanto aqueles 4,4 ç/kWh traduzir-se-iam, nas condições portuguesas, em 5,9 ç/kWh - e os 5,25 e 5,75 ç/kWh que o Brasil nunca esperara fossem ultrapassados ou obtidos em 2010, respectivamente, traduzir-se-iam em 7,15 e 7,7 ç/kWh, valores próximos dos definidos nas últimas atribuições por cá, precisamente.
Em segundo lugar, a atribuição de licenças de instalação de produções renováveis tem sido feita por leilão e monitorizada pela "ERSE brasileira", a ANEEL. O Ministério da Energia do Brasil realiza os leilões através de uma empresa pública de alto pendor técnico, a EPE, e os leilões são públicos (duram algumas horas) e totalmente transparentes. Compare-se isto com o nosso sistema, em que as tarifas remuneratórias das renováveis são definidas por Portaria, desconhecendo-se como foram calculadas mas sabendo-se da inexistência de qualquer organismo estatal, ou privado contratado de forma transparente, capaz de definir essas tarifas em função do interesse público, levando aos escandalosos abusos que já aqui denunciei! Têm existido "leilões" mas com as tarifas já definidas, geridos por comissões ad hoc de nomeação política e que têm negociado arranjos de que se conhece, por exemplo, o financiamento em 75 milhões de € de um "Fundo de Apoio à Inovação", de actividades misteriosas mas que incluíram o pavilhão português na Expo de Xangai em 2010...
O arredamento da nossa ERSE de tudo o que diga respeito ao tarifário e ao processo de concessão das renováveis em Portugal, e em especial das eólicas, retira-lhe qualquer poder regulador efectivo, e já muito antes de todo este processo ter começado a ser criticado por nós, o Prof. Santana, ex-administrador da ERSE, notava no seu livro "Reflectir Energia", essa limitação da ERSE, bem como o facto de já em 2004 a Agência Internacional de Energia ter chamado a atenção do Governo português para a exorbitância das tarifas praticadas na energia eólica!
O antigo Presidente da ERSE Jorge Vasconcelos, porém, que viu nascer todo esse obscuro negócio que retirava à tutela do seu organismo uma imensa parte do que lhe competia regular, nunca se manifestou contra isso, por razões que se clarificaram quando as suas posteriores posições vieram demonstrar a sua total identificação com a política então seguida.
Em suma, no Brasil pratica-se uma política transparente de competição entre concorrentes, o que pressiona os preços pedidos, enquanto por cá se preferiram os arranjos geridos por Portarias.
A juntar a essa transparência leiloeira, o mercado brasileiro abriu-se com gosto aos fornecedores asiáticos de turbinas, estando presentes em força as chinesas Goldwind e Sinovel, bem como a indiana Suszon. Estes dois factores conjugados, uma política competitiva de leilões transparentes e regulados e a abertura a baratíssimos construtores asiáticos, terão sido determinantes nos excelentes preços conseguidos!
Há, entretanto, um outro elemento relevante a acompanhar o sucesso brasileiro no baixo preço conseguido para a energia eólica (cerca de metade do custo real médio que ela tem cá): a política de fomento no Brasil de uma indústria de montagem e construção de componentes antes da abertura macissa do mercado, com a criação de um centro de I&D associado!
Há exactamente dois anos, escrevi aqui: "Ora foi só em 2006 que o Governo português sentiu a incomodidade de promover a forte subsidiação da indústria estrangeira de turbinas eólicas - facto único no mundo! - sem qualquer criação de riqueza no país e começou a falar na criação de um "cluster eólico". Já a importação e instalação de turbinas estrangeiras levava 5 anos! ...o prometido "cluster eólico" teve a primeira fábrica a operar apenas no fim de 2008, e com apenas 800 operários não-qualificados. A EFACEC assegura a electrificação dos geradores nas barquinhas e dos parques eólicos à rede mas, obviamente, isso é uma actividade não-exportável que se esgotará quando se esgotar a total ocupação do potencial eólico nacional, muito em breve.
O projecto do "cluster eólico" baseia-se num investimento liderado pela Enercon, o fabricante alemão preferido pelos decisores dos concursos públicos concessionários dos "pontos de ligação" à rede das eólicas, cobre em princípio todas as fases da fabricação e anuncia que, quando completo, empregará 1800 pessoas (na região de Viana do Castelo) e terá comportado um investimento directo estrangeiro de 0,1 biliões de € (2% do investimento nacional total na energia eólica). Há ainda e finalmente a generosa dádiva de 35 milhões de € a Portugal para que este comece a investir na tecnologia eólica (sob tutela de um "fundo" cuja Administração foi nomeada pelo Governo, e já só em 2009)...
A questão que se coloca é como se poderá sustentar tal "cluster industrial", uma vez esgotado (em breve) o mercado nacional, que apenas acrescente o valor da mão de obra nas partes cujo fabrico não pode ser robotizado e que, segundo o documento linkado acima, não constituirá mais de 15-20% do valor da turbina, considerando que:
- Como Portugal não tem qualquer know-how no assunto, está completamente dependente da Enercon;"...
Ora compare-se isto com a posição do Brasil:"Com o potencial dos fortes ventos e incentivos dos leilões, ainda não existe um fabricante de equipamentos eólicos brasileiro. Todas as marcas em operação são estrangeiras. Algumas já instalaram fábricas no País. Mas a primeira genuinamente brasileira será a gaúcha WEG, o maior fabricante de motores elétricos do País, que formou uma joint venture com a espanhola M. Torres Olvega Industrial, e se torna fornecedora de soluções completas (em sistema turn-key) para o segmento. De Norte a Sul do Brasil, a empresa já entregou transformadores, inversores de frequência, motores e tintas para o mercado eólico e, em breve, fornecerá aerogeradores, complementando o portfólio. ...Segundo Fiuza, a preocupação da Abeeólica para o desenvolvimento desta cadeia produtiva é com o incentivo do governo para um centro de pesquisa, destinado para equipamentos específicos. “É o primeiro passo para a indústria brasileira desenvolver-se para o setor”, afirma. “Assim, estaríamos seguindo os passos da Espanha, que começou com a atração de estrangeiros. Hoje um dos maiores fabricantes do mundo é a espanhola Gamesa, que está construindo uma fábrica na Bahia. “Um centro de pesquisa é o caminho natural para desenvolver a cadeia do produto nacional.""
As próximas duas novas centrais nucleares americanas, em construção, são da Southern Nuclear Operating Company e da South Carolina Electric & Gas, e são as primeiras novas após 25 anos de interrupção na instalação de reactores nucleares nos EUA. Apesar de toda a propaganda ecotópica por cá, os EUA estão com a Ásia no relançamento do nuclear, como aliás boa parte da Europa (Finlândia, Polónia, Lituânia, Holanda e Reino Unido, nomeadamente...).
Cada uma destas duas centrais americanas terá dois dos novos reactores de 3ª geração americano-japoneses, os AP 1000.
Por sua vez, cada um dos 4 geradores destas centrais terá 5 transformadores, presume-se, porque foram encomendados 20, ao todo, num contrato de vários milhões de USD. E a quem foram encomendados estes transformadores?
À nossa EFACEC!
Parabéns, portanto, a esta nossa empresa-estrela!
Os transformadores dos geradores a energia nuclear exigem uma enorme fiabilidade, porque uma avaria sua obriga à paragem de reactores que pode ser prolongada (até o transformador ser reparado). Há umas décadas atrás, quando a Inteligência Artificial estava na moda, a monitorização em tempo real e permanente dos transformadores das centrais nucleares foi das aplicações que mais I&D suscitou para a Inteligência Artificial na área da energia eléctrica.
Agora, a quantidade de transformadores encomendados mostra que o problema é resolvido, nestas centrais de 3ª geração, com redundância. Mas, mesmo assim, a qualidade destes transformadores continua a ser de enorme exigência e, portanto, a sua encomenda à EFACEC uma grande honra!